Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.239
Filtrar
1.
Nat Commun ; 15(1): 3270, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627364

RESUMO

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Heterocromatina/genética , Diferenciação Celular/genética , Metilação de DNA , Epigênese Genética
2.
Orphanet J Rare Dis ; 19(1): 103, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454488

RESUMO

BACKGROUND: As the most common subtype of adult muscular dystrophy worldwide, large cohort reports on myotonic dystrophy type I (DM1) in China are still lacking. This study aims to analyze the genetic and clinical characteristics of Chinese Han DM1 patients. METHODS: Based on the multicenter collaborating effort of the Pan-Yangtze River Delta Alliance for Neuromuscular Disorders, patients with suspected clinical diagnoses of DM1 were genetically confirmed from January 2020 to April 2023. Peak CTG repeats in the DMPK gene were analyzed using triplet repeat-primed PCR (TP-PCR) and flanking PCR. Time-to-event analysis of onset age in females and males was performed. Additionally, detailed clinical features and longitudinal changes from the disease onset in 64 DM1 patients were retrospectively collected and analyzed. The Epworth Sleepiness Scale and Fatigue Severity Scale were used to quantify the severity of daytime sleepiness and fatigue. RESULTS: Among the 211 genetically confirmed DM1 patients, the mean age at diagnosis was 40.9 ± 12.2 (range: 12-74) with a male-to-female ratio of 124:87. The average size of CTG repeats was 511.3 (range: 92-1945). Among the DM1 patients with comprehensive clinical data (n = 64, mean age 41.0 ± 12.0), the age at onset was significantly earlier in males than in females (4.8 years earlier, p = 0.026). Muscle weakness (92.2%), myotonia (85.9%), and fatigue (73.4%) were the most prevalent clinical features. The predominant involved muscles at onset are hands (weakness or myotonia) (52.6%) and legs (walking disability) (42.1%). Of them, 70.3% of patients had daytime sleepiness, 14.1% had cataract surgery, 7.8% used wheelchairs, 4.7% required ventilatory support, and 1.6% required gastric tubes. Regarding the comorbidities, 4.7% of patients had tumors, 17.2% had diabetes, 23.4% had dyspnea, 28.1% had intermittent insomnia, 43.8% experienced dysphagia, and 25% exhibited cognitive impairment. Chinese patients exhibited smaller size of CTG repeats (468 ± 139) than those reported in Italy (613 ± 623), the US (629 ± 386), and Japan (625 [302, 1047]), and milder phenotypes with less multisystem involvement. CONCLUSION: The Chinese Han DM1 patients presented milder phenotypes compared to their Caucasian and Japanese counterparts. A male predominance and an early age of onset were identified in male Chinese Han DM1 patients.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Miotonia , Distrofia Miotônica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Fadiga , Distrofia Miotônica/genética , Distrofia Miotônica/diagnóstico , Estudos Retrospectivos , Criança , Adolescente , Adulto Jovem , Idoso , Estudos Multicêntricos como Assunto , Estudos de Coortes
3.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473933

RESUMO

Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.


Assuntos
Processamento Alternativo , Distrofia Miotônica , Humanos , Criança , Camundongos , Animais , Distrofia Miotônica/genética , Músculo Esquelético/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
JAMA ; 331(14): 1227-1228, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38466298

RESUMO

This JAMA Insights discusses the signs and symptoms, diagnosis, and treatment of myotonic dystrophy type 1.


Assuntos
Distrofia Miotônica , Humanos , Mutação , Distrofia Miotônica/classificação , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Distrofia Miotônica/terapia
5.
Stem Cell Res ; 76: 103375, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490135

RESUMO

Myotonic dystrophy type 1 (DM1) is the most prevalent adult-onset muscular dystrophy affecting 1 in 8,000 individuals. It is characterized by multisystemic symptoms, primarily myopathy. The root cause of DM1 is a heterozygous CTG triplet expansion beyond the normal size threshold in the non-coding region of the DM1 protein kinase gene (DMPK). In our study, we generated and characterized three distinct DM1 induced pluripotent stem cell (iPSC) lines with CTG repeat expansions ranging from 900 to 2000 in the DMPK gene. These iPSC lines maintained normal karyotypes, exhibited distinctive colony morphology, robustly expressed pluripotency markers, differentiated into the three primary germ layers, and lacked residual viral vectors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos , Experimentação Humana Terapêutica , Linhagem Celular , Miotonina Proteína Quinase/genética
6.
Nat Commun ; 15(1): 1534, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378748

RESUMO

Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , DNA Mitocondrial/genética , Autoimunidade/genética , Leucócitos Mononucleares/metabolismo , RNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Estresse do Retículo Endoplasmático/genética
7.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165038

RESUMO

Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling in mice. Mice with forced skipping of exon 29 in the CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function displayed markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.


Assuntos
Canalopatias , Miotonia , Distrofia Miotônica , Camundongos , Animais , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Miotonia/metabolismo , Verapamil/farmacologia , Verapamil/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Processamento Alternativo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Músculo Esquelético/metabolismo
8.
Acta Neuropathol ; 147(1): 19, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240888

RESUMO

Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target. It remains unclear whether similar mechanisms underlie DM2 and, if so, whether these might also serve as potential therapeutic targets. In this cross-sectional study, we studied DM2 skeletal muscle biopsy specimens on proteomic, molecular, and morphological, including ultrastructural levels in two separate patient cohorts consisting of 8 (explorative cohort) and 40 (confirmatory cohort) patients. Seven muscle biopsy specimens from four female and three male DM2 patients underwent proteomic analysis and respiratory chain enzymology. We performed bulk RNA sequencing, immunoblotting of respiratory chain complexes, mitochondrial DNA copy number determination, and long-range PCR (LR-PCR) to study mitochondrial DNA deletions on six biopsies. Proteomic and transcriptomic analyses revealed a downregulation of essential mitochondrial proteins and their respective RNA transcripts, namely of subunits of respiratory chain complexes I, III, and IV (e.g., mt-CO1, mt-ND1, mt-CYB, NDUFB6) and associated translation factors (TACO1). Light microscopy showed mitochondrial abnormalities (e.g., an age-inappropriate amount of COX-deficient fibers, subsarcolemmal accumulation) in most biopsy specimens. Electron microscopy revealed widespread ultrastructural mitochondrial abnormalities, including dysmorphic mitochondria with paracrystalline inclusions. Immunofluorescence studies with co-localization of autophagy (p62, LC-3) and mitochondrial marker proteins (TOM20, COX-IV), as well as immunohistochemistry for mitophagy marker BNIP3 indicated impaired mitophagic flux. Immunoblotting and LR-PCR did not reveal significant differences between patients and controls. In contrast, mtDNA copy number measurement showed a reduction of mtDNA copy numbers in the patient group compared to controls. This first multi-level study of DM2 unravels thus far undescribed functional and structural mitochondrial abnormalities. However, the molecular link between the tetranucleotide expansion and mitochondrial dysfunction needs to be further elucidated.


Assuntos
Doenças Mitocondriais , Distrofia Miotônica , Humanos , Masculino , Feminino , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Estudos Transversais , Proteômica , RNA , DNA Mitocondrial/genética , Doenças Mitocondriais/genética
9.
Mol Cell Proteomics ; 23(1): 100683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993104

RESUMO

Dysregulated mRNA splicing is involved in the pathogenesis of many diseases including cancer, neurodegenerative diseases, and muscular dystrophies such as myotonic dystrophy type 1 (DM1). Comprehensive assessment of dysregulated splicing on the transcriptome and proteome level has been methodologically challenging, and thus investigations have often been targeting only few genes. Here, we performed a large-scale coordinated transcriptomic and proteomic analysis to characterize a DM1 mouse model (HSALR) in comparison to wild type. Our integrative proteogenomics approach comprised gene- and splicing-level assessments for mRNAs and proteins. It recapitulated many known instances of aberrant mRNA splicing in DM1 and identified new ones. It enabled the design and targeting of splicing-specific peptides and confirmed the translation of known instances of aberrantly spliced disease-related genes (e.g., Atp2a1, Bin1, Ryr1), complemented by novel findings (Flnc and Ywhae). Comparative analysis of large-scale mRNA and protein expression data showed quantitative agreement of differentially expressed genes and splicing patterns between disease and wild type. We hence propose this work as a suitable blueprint for a robust and scalable integrative proteogenomic strategy geared toward advancing our understanding of splicing-based disorders. With such a strategy, splicing-based biomarker candidates emerge as an attractive and accessible option, as they can be efficiently asserted on the mRNA and protein level in coordinated fashion.


Assuntos
Distrofia Miotônica , Proteogenômica , Camundongos , Animais , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Processamento Alternativo/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37950892

RESUMO

Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Reparo do DNA/genética , Repetições de Microssatélites/genética , Saccharomyces cerevisiae/genética , RecQ Helicases/genética
11.
Neurol Sci ; 45(2): 735-740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37584878

RESUMO

OBJECTIVE: Electrodiagnostic testing is an important screening test for myotonic dystrophy type 1 (DM1). Although myotonic discharges are observed on electromyography in cases of DM1, it is difficult to distinguish DM1 from other myotonic disorders clinically. In the present study, afterdischarges, another type of pathological potential revealed by electrodiagnostic testing, were analyzed, and their role in distinguishing DM1 from other myotonic disorders was explored. METHODS: Data from 33 patients with myotonic discharges on electromyography were analyzed retrospectively. According to gene testing, the patients were divided into DM1 (n = 20) and non-DM1 myotonia (n = 13) groups. Afterdischarges were investigated by retrospectively evaluating the electrodiagnostic findings of motor nerve conduction studies, F-waves, and repetitive nerve stimulations. RESULTS: Afterdischarges were observed in 17 of the 20 patients with DM1, with an occurrence rate of approximately 85%. However, afterdischarges were absent in all patients with non-DM1 myotonia. There were significant differences in the occurrence rate between the two groups (P < 0.01). CONCLUSION: Afterdischarges may serve as a suggestive role in clinical diagnosis of DM1. The discovery that DM1 can present with afterdischarges may pave a new way to study the pathogenesis of DM1.


Assuntos
Miotonia , Distrofia Miotônica , Humanos , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Miotonia/diagnóstico , Miotonia/genética , Estudos Retrospectivos , Eletromiografia , Testes Genéticos
12.
Neurosci Res ; 200: 48-56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806497

RESUMO

Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by the genomic expansion of CTG repeats, in which RNA-binding proteins, such as muscleblind-like protein, are sequestered in the nucleus, and abnormal splicing is observed in various genes. Although abnormal splicing occurs in the brains of patients with DM1, its relation to central nervous system symptoms is unknown. Several imaging studies have indicated substantial white matter defects in patients with DM1. Here, we performed RNA sequencing and analysis of CTG repeat lengths in the frontal lobe of patients with DM1, separating the gray matter and white matter, to investigate splicing abnormalities in the DM1 brain, especially in the white matter. Several genes showed similar levels of splicing abnormalities in both gray and white matter, with an observable trend toward an increased number of repeats in the gray matter. These findings suggest that white matter defects in DM1 stem from aberrant RNA splicing in both gray and white matter. Notably, several of the genes displaying abnormal splicing are recognized as being dominantly expressed in astrocytes and oligodendrocytes, leading us to hypothesize that splicing defects in the white matter may be attributed to abnormal RNA splicing in glial cells.


Assuntos
Distrofia Miotônica , Substância Branca , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Splicing de RNA/genética , Encéfalo/metabolismo , Análise de Sequência de RNA , Processamento Alternativo
13.
PLoS Genet ; 19(12): e1011109, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134228

RESUMO

The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.


Assuntos
MicroRNAs , Distrofia Miotônica , Animais , Processamento Alternativo/genética , Caenorhabditis elegans/genética , MicroRNAs/genética , Distrofia Miotônica/genética , Isoformas de Proteínas/genética
14.
Stem Cell Res ; 72: 103234, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37871474

RESUMO

Congenital myotonic dystrophy (CDM) is an autosomal dominant multisystemic disorder attributed to a large expansion of CTG trinucleotide repeats within the myotonic dystrophy protein kinase (DMPK) gene. In this study, we successfully reprogrammed dermal fibroblasts derived from two pediatric CDM patients and two age-matched individuals into induced pluripotent stem cells (iPSCs) using a non-integrating viral vector. The resulting CDM iPSC lines harbored approximately 2000 CTG repeats in the mutated DMPK allele. These iPSC lines expressed pluripotency markers and exhibited the capacity to differentiate into cells representing all three germinal layers, confirming their reliability as a research tool for investigating CDM and therapeutic strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Humanos , Criança , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de Trinucleotídeos , Reprodutibilidade dos Testes , Miotonina Proteína Quinase/genética
15.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707954

RESUMO

Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.


Assuntos
Doença de Huntington , Distrofia Miotônica , Humanos , Animais , Camundongos , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Nylons/farmacologia , Distrofia Miotônica/genética , Repetições de Trinucleotídeos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , DNA , Imidazóis/farmacologia
16.
Tidsskr Nor Laegeforen ; 143(13)2023 09 26.
Artigo em Norueguês | MEDLINE | ID: mdl-37753768

RESUMO

Myotonic dystrophy type 1 is one of the most common genetic neuromuscular diseases in adults. The disease not only affects the musculoskeletal system, but is multisystemic, and ocular involvement with cataract formation is a frequent additional finding. To avoid recurrence of secondary opacification that is difficult to treat, the cataract should not be treated with traditional lens replacement. This clinical review article presents ophthalmological findings in cases of myotonic dystrophy type 1 and describes a new surgical method for cataracts in this patient group.


Assuntos
Catarata , Distrofia Miotônica , Adulto , Humanos , Distrofia Miotônica/complicações , Distrofia Miotônica/terapia , Distrofia Miotônica/genética , Catarata/etiologia , Olho , Face
17.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762484

RESUMO

Myotonic dystrophy 2 (DM2) is a genetic multi-systemic disease primarily affecting skeletal muscle. It is caused by CCTGn expansion in intron 1 of the CNBP gene, which encodes a zinc finger protein. DM2 disease has been successfully modeled in Drosophila melanogaster, allowing the identification and validation of new pathogenic mechanisms and potential therapeutic strategies. Here, we describe the principal tools used in Drosophila to study and dissect molecular pathways related to muscular dystrophies and summarize the main findings in DM2 pathogenesis based on DM2 Drosophila models. We also illustrate how Drosophila may be successfully used to generate a tractable animal model to identify novel genes able to affect and/or modify the pathogenic pathway and to discover new potential drugs.


Assuntos
Proteínas de Drosophila , Distrofia Miotônica , Animais , Drosophila melanogaster/genética , Distrofia Miotônica/genética , Drosophila , Íntrons/genética , Músculo Esquelético , Proteínas de Ligação a RNA , Proteínas de Drosophila/genética
18.
J Neuromuscul Dis ; 10(6): 1111-1126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638448

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is a dominant autosomal neuromuscular disorder caused by the inheritance of a CTG triplet repeat expansion in the Dystrophia Myotonica Protein Kinase (DMPK) gene. At present, no cure currently exists for DM1 disease. OBJECTIVE: This study investigates the effects of 12-week resistance exercise training on mitochondrial oxidative phosphorylation in skeletal muscle in a cohort of DM1 patients (n = 11, men) in comparison to control muscle with normal oxidative phosphorylation. METHODS: Immunofluorescence was used to assess protein levels of key respiratory chain subunits of complex I (CI) and complex IV (CIV), and markers of mitochondrial mass and cell membrane in individual myofibres sampled from muscle biopsies. Using control's skeletal muscle fibers population, we classified each patient's fibers as having normal, low or high levels of CI and CIV and compared the proportions of fibers before and after exercise training. The significance of changes observed between pre- and post-exercise within patients was estimated using a permutation test. RESULTS: At baseline, DM1 patients present with significantly decreased mitochondrial mass, and isolated or combined CI and CIV deficiency. After resistance exercise training, in most patients a significant increase in mitochondrial mass was observed, and all patients showed a significant increase in CI and/or CIV protein levels. Moreover, improvements in mitochondrial mass were correlated with the one-repetition maximum strength evaluation. CONCLUSIONS: Remarkably, 12-week resistance exercise training is sufficient to partially rescue mitochondrial dysfunction in DM1 patients, suggesting that the response to exercise is in part be due to changes in mitochondria.


Assuntos
Distrofia Miotônica , Treinamento de Força , Masculino , Humanos , Distrofia Miotônica/genética , Músculo Esquelético/patologia , Exercício Físico/fisiologia , Mitocôndrias/metabolismo
19.
Curr Opin Neurol ; 36(5): 474-478, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639480

RESUMO

PURPOSE OF REVIEW: Myotonic dystrophy type 2 (DM2) is a genetic disorder belonging to the spectrum of myotonic dystrophies. DM2 is characterized by progressive muscle weakness, wasting and muscle pain (myalgia), but can also affect many other organ systems. In this review, we provide an updated overview on the research literature on DM2 with a focus on the management of multisystemic involvement and atypical clinical phenotypes. RECENT FINDINGS: Recent studies have focused on different aspects of multisystemic involvement. Early and severe cardiac involvement can occur in DM2 and needs to be managed appropriately. Diabetes has been shown to be more common in DM2 than in DM1, while a combination of symptoms (cataracts, myotonia, tremor) can be used to raise clinical suspicion and initiate genetic testing for DM2. Autoimmune disease has been shown to occur in up to one-third of DM2 patients, possibly due to altered immune pathways. New evidence also suggests a childhood-onset phenotype presenting with foot deformities. SUMMARY: The multisystemic aspects of the disease require a multidisciplinary approach for some patients, most likely even including state-of-the-art cardiac and brain imaging to detect and treat complications earlier. Of note, our concept of DM2 as an adult-onset disease is somewhat challenged by evidence suggesting a few pediatric DM2 patients and possibly anticipation, at least in some DM2 families. More studies, including larger cohorts, are needed to better understand this possible early-onset DM2 phenotype variant.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 2 , Distrofia Miotônica , Humanos , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Afeto , Percepção
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(6): 930-934, 2023 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37587079

RESUMO

Myotonic dystrophy type 1 (DM1, OMIM 160900) is a rare autosomal dominant hereditary disease. A case of DM1 patient with early onset diabetes and decreased muscle strength was treated in the Department of Endocrinology, Third Xiangya Hospital, Central South University. The peripheral blood of the patient was collected to extract DNA for gene detection. It was found that the triple nucleotide CTG repeat in the 3'-untranslated region (3'-UTR) of the dystrophia myotonica protein kinase (DMPK) gene was more than 100 times, and the diagnosis of DM1 was clear. For diabetes patients with multiple system abnormalities such as muscle symptoms, attention should be paid to the screening of DM1, a rare disease.


Assuntos
Anormalidades Múltiplas , Diabetes Mellitus , Distrofia Miotônica , Humanos , Distrofia Miotônica/complicações , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Hospitais , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...